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Abstract

This paper aims at understanding the dynamics of pricing option on Cryptocurrencies - BTC and ETH using
diffusion (Heston 1993) and jump diffusion models (Bates 1996). Cryptocurrency markets tend to show high
volatility and abnormally high returns in a rally which begs two critical question, (1) How appropriate are
current models in circulation in capturing dynamics of asset prices and their consequences on option prices
and (2) What can market observed option data tell us about the investors in this de-centralised market
places. I’ve tried to answer these two questions in a meaningful manner with demonstrable evidence from
the three models in discussion, which can be treated as an incremental refinements over years in modelling
asset prices and understanding option prices as quoted in market.
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1 Introduction

Decentralised digital currencies and peer-to-peer payment mechanisms have gained traction
exponentially in recent years. Underlying technologies supporting such currencies have made them
a likely candidate for currency of the future in some ways, shapes or forms. As the supporting
infrastructure around digital currencies evolves and their adoption gains pace, we are seeing an
increasing interest in derivatives market based on these digital currencies.

With each transaction in crypto-market essentially being a record on a de-centralised ledger, it has
facilitated any user with a crypto wallet to become a participant in the derivatives market. This
is materially different to what we see in traditional asset classes and traditional financial markets
where a retail investor has to have a broker account and depending on their sophistication within
retail segment a particular investor is permitted to trade using certain high risk instruments which
might have a non-linear relationship to the underlying asset and is therefore “risky” to understand
and manage.

Many exchanges as of the year 2022 permit retail as well as institutional investors to carry out
trades in a common market place without an intermediary which has been the point of motivation
towards writing this article. As seen in traditional financial markets where “smart money” seems
to always have an upper hand, I’m keen to understand what are the implication on behaviour of
option prices and volatilities where we’ve a truly open and de-centralised market place.

To better understand these implications, I’ve tried to compare equity and crypto option markets,
using a set of three models and drawn some meaningful economic conclusions. The three models are
chosen such that I’m able to modulate the underlying stochastic processes for asset pricing using a
combination of diffusion, jump-diffusion and correlated jump-diffusion processes.

1.1 Cryptocurrency Market

Market cap of cryptocurrencies have steadily risen since inception, with local peaks noticeable
around the end of pandemic years and understandably so, as seen below

Fig. 1: Total Cryptocurrency Market Capitalisation
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Looking particularly at the “household” cryptocurrencies i.e. BTC and ETH, since 2017, market
has seen a steady upwards trend in unit price. This is not a surprise in hindsight with the amount of
attention and coverage these currencies have enjoyed over recent number of years, albit, beginning
of 2022 has seen significant drops in both currencies setting new records.

Fig. 2: BTC Price History Fig. 3: ETH Price History

1.2 Market Structure

Write about miners, POS, POW how ETH is moving to other etc.etc.
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2 BTC & ETH Options Market

Derivatives market in Cryptocurrencies has gained momentum with many regulated and unregulated
exchanges in operations as of 2022. These exchanges offer access to retail and institutional
investors with or without a crypto wallet, which has encouraged many early adaptors, speculators,
techno-nerds and investors from all walks of life, thereby creating a much more healthier and
heterogeneous mix of market participants.

2.1 Options

For the purposes of this paper, I’m focusing on options quoted on BTC and ETH futures which are
traded on Deribit exchange. Deribit is an unregulated exchange with approximately 90% of traded
volumes across BTC and ETH options.

Fig. 4: BTC Options Volume Fig. 5: ETH Options Volume

The option contract is written on a cash settled future contract on BTC and ETH, where maturity of
option T o

i matches that of underlying future contract T f
i . Should any slice of maturity is missing in

underlying futures contract strip, Deribit floats an option on a synthetic futures contract. Maturities
for underlying futures and consequently for options range from one day to one year with unequally
spread intervals. For each maturity slice, a number of strikes Kt

i are traded, creating a sufficiently
dense grid. Therefore, in this article, I’ll be analysing options quoted on futures and not directly
on BTC/USD oe ETH/USD.

All options on Deribit are European style, which means they can only be exercised at expiry, unlike
American style options, that can be exercised any time until expiry. Options on Deribit are also
cash settled, which means when they are exercised it is only the profits that are paid.

The above construct present it’s own set of challenges from option pricing perspective. Since the
options are quoted in units of underlying futures contract such that the price in “base currency”,
say USD, is xf ∗FT

t , where xf refers to units and FT
t is the price of the underlying future contract

at t, maturing at T , in USD.
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3 Pricing and Model Dynamics

3.1 Stochastic Volatility: Heston Model

Heston model as published by Steven L. Heston [1] in 1993, assumes the spot price for underlying
asset at any given time t follows a continuous diffusion process as described in equation (??), where

dW
(S)
t is a Weiner process

dSt = µStdt+
√
V tStdW

(S)
t (3.1.1)

Heston further builds out that the volatility process which feeds the asset process follows an
Ornstein–Uhlenbeck process, which results in a familiar CIR [2] (Cox, Ingersoll and Ross) process
as described in (3.1.2) below,

dVt = κ(θ − Vt)dt+ σv

√
V tdW

(V )
t (3.1.2)

The model further assumes the correlation between the two Weiner processes dW
(S)
t and dW

(V )
t is

defined as ρ,

Cov(dW
(S)
t , dW

(V )
t ) = ρdt (3.1.3)

3.1.1 Parameters

Some initial and sensible conditions are assumed on process St and Vt as defined below,

S(0) = S0 > 0;V (0) = V0 > 0 (3.1.4)

Here St represents the price process for underlying at any time t and Vt is the instantaneous variance
at any time t.
θ is the long run mean variance and κ corresponds to the speed of adjustment of volatility of

volatility σv to the long run mean variance θ. The two Weiner processes dW
(S)
t and dW

(V )
t is

defined under risk neutral measure P̃ with instantaneous correlation ρ. The rate of return under
risk neutral measure for underlying asset price process St is defined as µ.

3.1.2 Closed Form Solution: European Call

Under Heston [1] dynamics, any contingent claim, sayX, will be a function of price of the underlying
asset S, the volatility V and time t, which I’ll express as X(S,V,t). This claim is assumed to be
an European call for the purposes of this paper and therefore is only depend on the information
known to the processes at or before time t, in other words, X(S,V,t) is adopted to filtration until t,
where the value of the claim is dependent on price process at t denoted at St, the corresponding
volatility process at t denoted at Vt and time t itself. It is not dependent on outcomes of each of
the stochastic processes prior to t however those are known.

Therefore the Heston dynamics for European call will follow the PDE,

1

2
V S2 ∂

2X

∂S2
+ρσvV S

∂2X

∂S∂V
+
1

2
σ2
vV

∂2X

∂V 2
+rS

∂X

∂S
+(κ(θ−V )−λ(S, V, t))

∂X

∂V
−rX+

∂X

∂t
= 0 (3.1.5)

As Heston pointed out in [1], we can let the market price of volatility risk, given by λ(S, V, t), be



6

equal to λV .

To construct an European Call with strike K and maturity T, the PDE for claim X (3.1.5) must
follow the option boundary conditions as stated below [7],

X(S,V,t) = max(St −K, 0) (3.1.6)

X(S,V,t) = 0 ∀ S = 0 (3.1.7)

X(S,V,t) = 1 lim
S→inf

(3.1.8)

rS
∂X

∂S
(S, V, t) + κθ

∂X

∂V
(S, V, t)− rX(S, V, t) +Xt(S, V, t) = 0 ∀ V = 0 (3.1.9)

X(S,V,t) = S lim
V→inf

(3.1.10)

Value of an European call can now be written as

c(S,V,t) = e−rτE[(St −K), 0] = exP1(x, V, t)− e−rτKP2(x, V, t) (3.1.11)

where x = lnS and τ = T − t

3.1.3 Characteristic Function

Heston [1] famously guessed the functional form of the characteristic function

f(S, V, t;ϕ) = eC(T−t;ϕ)+D(T−t;ϕ)V+ι̇ϕS (3.1.12)

The coefficients C and D are of the form,

C(τ ;ϕ) = rϕι̇τ +
α

σ2

(
(bj − ρσϕι̇+ d)τ − 2ln

[
a− gedτ

1− g

])
(3.1.13)

D(τ ;ϕ) =
bj − ρσϕι̇+ d

σ2

[
1− edτ

1− gedτ

]
(3.1.14)

g =
bj − ρσϕι̇+ d

bj − ρσϕι̇− d
(3.1.15)

d =
√
(ρσϕτ − bj)2 − σ2(2ujϕι̇− ϕ2) ∀ j = 1, 2 (3.1.16)

The probability can then be computed by integrating the real part,

P (S, V, T ; ln[K]) =
1

2
+

1

π

∫ ∞

0

Re

[
e−ι̇ϕln[k]fj(S, V, T ;ϕ)

ι̇ϕ

]
(3.1.17)
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3.2 Stochastic Volatility with Jumps: Bates Model

Bates [3] in 1996 extended the Heston model dynamics to include for jumps in asset prices, which
would account for sudden moves in underlying. When analysing asset processes in context of
cryptocurrencies, where historically markets have known to be highly volatile and significant jumps
in levels of various mainstream coins are well documented (i.e. BTC, DOGE), an appropriate
adjustment factor on asset price process seems like a logical approach to better model the
cryptocurrency dynamics.

Bates describes the asset price process as follows,

dSt = (r − q − λµJ)Stdt+
√
V tStdW

(S)
t + JtStdNt (3.2.1)

where r is the continuous risk free rate of return on asset S and q is the continuous dividend yield.

As of year 2022, a “dividend” phenomenon is not directly observed on traditional buy-and-hold
type of trades on cryptocurrencies, therefore for the purposes of this paper, I’ll be setting the value
for q = 0. Whilst there are some exchanges and DAOs (Decentralised Autonomous Organisations)
that allow investors to “stake” their coins and earn a APY (Annualised Percentage Yield), which
could be seen as a viable proxy for dividends, it is important to note that these staking rewards
are not available to investors who simply buy-and-hold cryptocurrencies in their hot or cold wallets
from exchanges nor are these rewards distributed to option holders/writers. More-over, exchanges
and DAO pay out these rewards in their native token and which are assumed to be independent
assets to the one of which I’m assessing the option price behaviour for.

As with Heston model, Bates model dynamics assumes a CIR [2] fashioned volatility process, the
parameters of which are explained in section 3.1

dVt = κ(θ − Vt)dt+ σv

√
V tdW

(V )
t (3.2.2)

Cov(dW
(S)
t , dW

(V )
t ) = ρdt (3.2.3)

The random process exciting jumps Nt in asset prices is assumed to follow a poisson with intensity
λ, hence the probability of jump size equal to 1 is λdt. In (3.2.1), J is the random jump size of
which is expressed as percentage and it’s realisation is conditioned on its occurrence. Similar to
Merton’s jump model [4], the logarithm of jump size Jt is distributed as Gaussian as described in
(3.2.5)

P (dN = 1) = λdt (3.2.4)

log(1 = Jt) = N (log(1 + µJ)−
σ2
J

2
, σ2

J) (3.2.5)

3.2.1 Parameters
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4 Model Calibration and Results

Implementing any model to price options faces the challenge to reproduce the observed market
prices Cm

K,T for a set of strikes and maturities. The parameters used in model to control the
behaviour of various factors / moments then need to be estimated in such a manner that the model
overall reproduces the market observed prices. This process of determining the model parameters
is often known as model calibration.

Whilst there are number of methods and techniques that can be employed to determine the model
parameters, the estimation method of such parameters is extremely critical as this determines
the overall stability of the model, should the underlying data or observed market prices change
materially in events of shocks and crises. The major challenge in calibrating any model is the fact
that model parameters aren’t directly market observables and therefore the input data available is
incomplete it in observed form to identify required parameter set.

In this paper, and as often observed as a common market practice, I’ll employ several various
minimisation techniques to estimate the model parameters for calibration. The idea is to re-generate
market observed prices Cm

K,T using an objective function (the closed form solution of European
calls) and minimising the squared difference between the two, thereby spitting out the optimal set
of model parameters that justify the market observed price, or a price as close to market observed
price as possible.

minimize f(x)

f(x) =
∑N

i=1 wi|Cm
K,T − cS,V,K,T |2

where, c(S,V,K,T ) is the model price for European call with underlying asset price process S, volatility
process V , strike K and maturity T . The minimisation of error (differences between prices squared)
is computed over N options that are used with weight of each being wi.

Depending on the model, the minimisation techniques may vary, which I’ve described in the
individual model calibration subsection throughout this section.

4.1 Heston Model

4.1.1 Minimisation Routine

4.2 Bates Model

4.2.1 Minimisation Routine
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5 Conclusions
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A SVCJ

A.1 Stochastic Volatility with Correlated Jumps: SVCJ

As suggested by Hou et al. [5], a continuous-time model suggested by Duffie et al. [6] seems to
be the most appropriate model candidate. This continuous-time model accounts for correlated
jumps between a stochastic volatility process and a return process thereby adding one additional
parameter to the mix. Such a stochastic volatility correlated jump model (SVCJ) has one additional
parameter ρj , which is an extension to the Bates [3] which models a single jump in underlying asset
process.

dlogSt = µdt+
√
V tdW

(S)
t + Jy

t dNt (A.1.1)

dVt = κ(θ − Vt)dt+ σv

√
V tdW

(V )
t + Jv

t dNt (A.1.2)

Cov(dW
(S)
t , dW

(V )
t ) = ρdt (A.1.3)

P (dN = 1) = λdt (A.1.4)

B Metropolis-Hastings Algorithm

Sampling from a non-standard distribution with probability density P (x) can be challenging when
performing a Markov Chain Monte Carlo. The Metropolis-Hastings algorithm provides an elegant
way to sample a non-standard distribution provided we know a function f(x) proportional to the
density P (x) and values of f(x) can be calculated.

The algorithm works with a fundamental premise that more and more samples values are produced,
then the distribution of produced sample closely resembles the required non-standard distribution
with density P (x).

The samples are drawn iteratively in such that the next sample value is based on the current
sample value, thus forming a Markov Chain. A certain number of initial draws are “burnt” to
ensure that the process starts with sufficient samples drawn so as to resemble the distribution to
desired distribution as close as possible. With the next sample, a certain probability of acceptance
is attached, which is determined by comparing the function f(x) value at current and next proposed
candidate sample. If the proposed candidate value is discarded, then the current value is used to
repropose a new candidate in an iterative fashion.

An end state is said to be achieved in this processes, when the Markov process asymptotically
reaches a unique stationary distribution π(x) such that, π(x) = P (x).

Let us define a Markov process with transition probability of P (x′|x), which is defined as transition
probability of going from x −→ x′. Now, a unique stationary distribution π(x) must exist, which
demands 2 conditions to be met.
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x0 x1 x2 x3

burn period ends

x4 ... xn

Fig. 6: Sampling from distribution with unknown probability density P(x)

• Detailed Balance: A weak condition that requires each transition is reversible, i.e. x −→ x′

and x′ −→ x are permissible transitions for a given pair of samples x, x′. And therefore,
the transition probability from either state to another must be equal, i.e. π(x)P (x′|x) =
π(x′)P (x|x′).

• Uniqueness: A condition requiring every state (x) must be aperiodic, i.e. process not
returning to same state (x) after a fixed set of iterations and positive recurrent, i.e. expected
number of iterations to return to the same state are finite. This ensures that the state is
ergodic in nature.

The detailed balance can be expressed as

P (x′|x)
P (x|x′)

=
P (x′)

P (x)
(B.0.1)

How-ever the transition to next state is a two step step process: (1) Proposing a sample candidate
(x′) and (2) there-after accepting or rejecting the sample candidate.

Let Q(x′|x) be the conditional probability from the proposal distribution Q, for proposing a state
change x′ −→ x, and let A(x′|x) be the probability of acceptance of newly proposed state (x′).

P (x′|x) = Q(x′|x)A(x′|x) (B.0.2)

Using equation (B.0.1),
A(x′|x)
A(x|x′)

=
P (x′)Q(x|x′)

P (x)Q(x′|x)
(B.0.3)

An acceptance ratio can be chosen such that above condition is met.

A(x′|x) = min

(
1,

P (x′)Q(x|x′)

P (x)Q(x′|x)

)
(B.0.4)

Therefore, either A(x′|x) = 1 or A(x|x′) = 1.
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